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Deviations from the classical Smoluchowski expression for the growth rate of a 
droplet in a supersaturated vapor can be expected when the droplet radius is 
not large compared to the mean free path of a vapor molecule. The growth rate 
then depends significantly on the structure of the kinetic boundary layer around 
a sphere. We consider this kinetic boundary layer for a dilute system of 
Brownian particles. For this system a large class of boundary layer problems for 
a planar wall have been solved. We show how the spherical boundary layer can 
be treated by a perturbation expansion in the reciprocal droplet radius. In each 
order one has to solve a finite number of planar boundary layer problems. The 
first two corrections to the planar problem are calculated explicitly. For radii 
down to about two velocity persistence lengths (the analog of the mean free 
path for a Brownian particle) the successive approximations for the growth rate 
agree to within a few percent. A reasonable estimate of the growth rate for all 
radii can be obtained by extrapolating toward the exactly known value at zero 
radius. Kinetic boundary layer effects increase the time needed for growth from 
0 to 10 (or 2�89 velocity persistence lengths by roughly 35 % (or 175 % ). 

KEY WORDS: Droplet growth; kinetic boundary layer; Brownian motion; 
Klein-Kramers equation. 

1. I N T R O D U C T I O N  A N D  S U R V E Y  

C o n s i d e r  a smal l  l i qu id  d r o p  s u s p e n d e d  in a gas m i x t u r e  cons i s t ing  of  a 

s u p e r s a t u r a t e d  v a p o r  a n d  a b a c k g r o u n d  gas inso lub le  in the  l iquid.  T h e  

d r o p l e t  will  g r o w  by a b s o r b i n g  v a p o r  m o l e c u l e s  t ha t  diffuse t o w a r d  it 

t h r o u g h  the b a c k g r o u n d  gas. A s imple  t heo re t i c a l  t r e a t m e n t  for  p r o b l e m s  

of  this type  was  p r o p o s e d  l o n g  a g o  by Smoluchowsk i~ l l :  he so lved  the  

s t a t i o n a r y  dif fus ion e q u a t i o n  for  the  c o n c e n t r a t i o n  o f  v a p o r  mo lecu l e s  wi th  

i Institut ftir theoretische Physik, Johannes Kepler Universit~it Linz, A-4040 Linz, Austria. 
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the boundary condition of vanishing concentration at the surface of the 
droplet. This simplest treatment yields a growth rate inversely proportional 
to the droplet radius (a derivation will be given in Section 6). For small 
radii this result becomes nonsensical, and a more refined theoretical treat- 
ment is called for. For droplets of molecular dimensions a fully microscopic 
treatment is required; such a treatment is beyond the scope of the present 
paper. However, for droplets large compared to the critical droplet radius, 
but of a size comparable to the mean free path of the vapor molecules in 
the gas, a treatment based on a kinetic description of the gas, combined 
with simple boundary conditions at the droplet surface, appears promising. 
In this paper we explore the simplest model of this type. Some possible 
extensions are briefly discussed in Section 7; a further discussion of the 
underlying physics can be found, e.g., in a review by Wagner. 12) 

The simplest kinetic equation is the Klein-Kramers equation 13) for 
noninteracting Brownian particles; the simplest relevant boundary condi- 
tion is obtained by assuming that any Brownian particle hitting the surface 
of the droplet is absorbed by it. This implies that just outside the surface 
there are no Brownian particles with radial velocities pointing outward 
from the surface. Thus, the velocity distribution near the surface must be 
far from Maxwellian: the droplet is surrounded by a kinetic boundary 
layer. (4~ The corresponding kinetic boundary layer problem for a flat 
boundary was solved exactly by Marshall and Watson. (5) An equivalent 
treatment was given by Hagan et al. ~6~ We presented an efficient numerical 
solution in a recent paper, (7) henceforth referred to as I; this paper also 
contains more complete references to earlier work on the subject. For the 
spherical problem the situation is less satisfactory. There are a number of 
approximate treatments, based on truncations of a set of moment equa- 
tions equivalent to the Klein-Kramers equation. The earliest treatment of 
this type was given by Razi Naqvietal . ,  (8~ the most complete one by 
Kumar and Menon. ~9~ Although in particular the latter paper provides 
quite accurate numerical values for not too small radii, the procedure 
remains somewhat unsatisfactory, since the truncation process involved 
requires a number of to some extent arbitrary choices. 

The central result of the present paper is that the spherical boundary 
layer problem can be treated by means of a perturbation theory in the 
reciprocal droplet radius (in suitable dimensionless units). In lowest order 
we are led back to the known planar solution, and all subsequent correc- 
tion terms can also be obtained from the solution of auxiliary planar 
boundary layer problems. Thus, each term in the perturbation series could 
in principle be determined analytically; in practice the numerical procedure 
from I can provide accurate results with much less effort. 

The perturbation algorithm is described in Section 4. In preparation 
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we present the basic equations in Section 2; in particular, we transform the 
three-dimensional Klein-Kramers equation to a symmetry-adapted system 
of coordinates in the one-particle phase space. In Section 3 we construct 
the building blocks for the solution of the boundary layer problem, the 
boundary layer eigenfunctions. These are obtained as formal series in the 
inverse droplet radius R. In Section 4 we show how these functions should 
be linearly combined to provide the solution of the fundamental boundary 
layer problem. The first two correction terms are then explicitly evaluated 
in Section 5, the first one analytically, the second one numerically. To 
obtain a rough estimate of the quality of the approximation thus obtained, 
we compare with the exactly known limit R+0. We also compare with 
some earlier numerical results, and with an approximate analytic expres- 
sion by Sahni/1~ 

In Section 6 we derive the consequences for the growth curves of 
droplets in a supersaturated vapor. In this context we propose a simple 
way to include the effect of finite supersaturation. In the final section we 
discuss some physical and mathematical limitations of our simple model 
and of our treatment of it, as well as some ways in which some of the 
neglected physical effects could be taken into account without an undue 
increase in mathematical complexity. 

2. T H E  K L E I N - K R A M E R S  E Q U A T I O N  IN S P H E R I C A L  
G E O M E T R Y  

The kinetic equation for the joint distribution P(u, r, t) of the velocity 
u and the position r of a Brownian particle (the Klein-Kramers equation) 
reads 

8t - -U '~r r+) '~uu"  " + ~ u u  P ( u , r , t )  (2.1) 

where m is the mass of the particle, 7 is its friction coefficient (i.e., the rate 
at which its velocity reaches equilibrium), and f i=  ( kT)  1, with T the 
temperature of the surrounding medium. In most of this paper we shall use 
dimensionless units with 7 = m/~ = 1; this means in particular that the unit 
of length is the velocity persistence length l =  7 1(raft) - l  j2. Moreover, we 
are interested in stationary solutions with spherical symmetry. Thus, it is 
convenient to use spherical coordinates for r, 

(xr, Xo, xe)  = (r, O, 4) (2.2) 

and to decompose u according to the associated unit vectors: 

ur = u- dr(r); Uo = u" do(r); u~ = u" 8o(r) (2.3) 
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When one transforms (2.1) into an equation for P(u~, Uo, u~; r, O, O; t), the 
implicit r dependence of the uk leads to the appearance of "covariant" 
derivatives: 

ll ~ + ~ F~tuku t (2.4) 
IOr/Oxkl Oxk Oum klrn 

where the F~- are the connection coefficients for the "noncoordinate basis" 
used, defined by Misner et al. ~ For  the spherical coordinate system the 
only nonvanishing connection coefficients are (see ref. 11, p. 213) 

r 

- - I c t g  0 

(2.5) 

Hence one obtains  for the s ta t ionary  version of (2.1) 2 

~3 + ~ ( c~ + c? Uo ~? 

1 (UrUO -- U2~ ctg O) ~ U e O 1 (U~ + U~) ~U, _t_ r 
OU-----O I" sinOe~b r 

+ - ( u r u r 1 6 2  c~ P(ur, uo, u~;r,O,~b)=O 
r 

(2.6) 

In this paper we are concerned only with solutions of (2.6) that are 
spherically symmetric; hence, they do not depend on 0 and q~, and they 
contain u o and ur only through the combination 

ut = (u~ + u~) 1/2 (2.7) 

For  such solutions (2.6) can be simplified to 

1 u2 rUr__U~U ' P(U~, u, r ) = 0  (2.8) 
+ ur 7 

with 

~ r = =  - Ur+ ; % =  U, U,+ (2.9) 
?A t (~b/t 

2 The "covariant" additional terms were omitted in an earlier treatment by Kneller and 
Titulaer; ~2~ the moment equations derived there are correct, however, due to a cancellation 
of errors. 
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The operators ~gr and ~, already occurred in I; their eigenvalues and eigen- 
functions are given by 

~g,-~m(U,.) = --mOrn(U,.); Cg, Zt(U~) = --2lzt(u,) (2.10) 

where m and l may assume all nonnegative integer values and ~,, and Z/are 
known functions, given explicitly in I. For later reference we merely note 
that ~bo(U ,) and 7,o(U,) correspond to the Maxwell distribution, and that 
~bL(ur) is the only one of the Om(Ur) that carries a radial current (of unit 
density in the positive r direction). The operator oK, can be written in the 
form~3,71 

C6r=--a+a-; a+Om=(m+l)Om+l; a -  ~b., = (1 -- ~ o )  q~m t 
(2.11) 

It will turn out to be convenient to introduce similar raising and lowering 
operators for the ){~: 

b+)~t= 2( l+ 1) 7~l+1; b_zl=2lxt_l  (2.12) 

The explicit form of the b e can be deduced from the explicit expressions 
in I and the properties of the Laguerre polynomials. For present purposes 
we merely note the relations 

u2~rur=a+(b++b +2~, ' , -2)  (2.13a) 

UrU~'~U =(a + +a )(b+ +C~-2)  (2.13b) 

that will be useful in constructing special solutions of (2.8). 

3. T H E  B O U N D A R Y  LAYER E I G E N F U N C T I O N S  

In this section we introduce a set of special solutions of (2.8) that will 
be used in constructing solutions of boundary value problems in spherical 
geometry. First there is the obvious equilibrium solution 

eO(Ur, U,, r) = ~o(U,t Zo(U,) (3.1) 

which corresponds to a unit density for all r. Second, there is a 
current-carrying solution 5uL., which can formally be written a s  I I~  

- i ?  E~] 1 
~UL(ur, u,, r) = r-v; 7 ~ z,(u,) ~,_2,(ur) 

l = O  , = 0  

(3.2) 
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where [i/2] denotes the integer part of (2. The first sum in (3.2) diverges 
for lull > r, but (3.2) can be used to obtain moments of ~u C, e.g., the density 
n~(r) = - r  ~ and the current j~(r)= - r  -2. Since we shall need only finite 
approximants to the infinite sum in (3.2), we shall not need expressions for 
~,. of more general validity, which can be obtained from (3.2) by analytic 
continuation. 

From the results obtained in I for the planar boundary layer problem 
(and, e.g., from the relation between one-dimensional and spherical 
problems in quantum mechanics or electromagnetism) one expects addi- 
tional solutions of (2.8) that for large r have the form 

1 ,;.nlr g%(u ,  u,, r) -~ - e ~,,~(u~) ;r 
r 

2,l = (n + 2/)1/2 (3.3) 

The explicit form of the O,t(u) is given in Section 4 of I. From (3.2) we 
suspect that the full boundary layer functions of the three-dimensional 
problem contain a mixture of different l; all terms should, however, have 
the same inverse decay lengths 2~z. Hence we use a somewhat different 
labeling system and search for solutions of the form 

1 WTL(ur ' u,) ~"C(u r, u,, r)= e ~ "/~ .~. r- i 
l=lO 

(n=  1, 2, 3,...) (3.4a) 

with 

nL ~ q5 (Ur) (3.4b) 
l = 0  

(the meaning of the index L will become clear as the construction 
proceeds). Substituting (3.4a) into (2.8) and using the results (2.9) (2.13) 
leads to the set of equations 

[~r+cgt+nl /2(a++a )3 ~u7 L 

- -  - -  ~ ' / i - -  1 = [ - b + a  + ( ~ , + 1  i)a+ ( c g , + i - 3 ) a  + b _ a + ]  nL (3.5) 

This hierarchy of equations can be solved consecutively when the operator 
acting on ~7/~ on the left-hand side can be inverted. The expansion (3.4b) 
effectively reduces cg t to a number. A similar reduction for the remaining 
part of the operator can be obtained by expanding the qsnLtu, ~ r~ in terms of 
the eigenfunctions of 

~rn=~r+nI/2(a+ + a _ ) =  --[(a+ --n~/2)(a_ --nL/2)--n] (3.6) 
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Since the a+ obey the familiar ha rmonic  oscillator c o m m u t a t i o n  relations, 
the eigenvalues of  ~g~, are 

#,,,, = n - m (m = 0, 1, 2,...) (3.7) 

The eigenfuntions are related to those of a ha rmonic  oscillator shifted over  
(2n)1/2;  using the me thod  of Pagani ,  (14a51 one finds 3 

{ ,m(U~)=cs t .Hm [ u ~ - ( 2 n )  t'2] e ("~-'""/2/2 (3.8) 

A compar i son  with the definition in I of the O~(u~) occurring in (3.3) yields 
the relation 

~nz(u~) = cst .  ~, + 2l,,(u~) (3.9) 

The constant  can be made  equal  to unity by a normal iza t ion  convent ion  
for the ~,,m" The normal iza t ion  for the 0m is/7/ 

f ~ t ( u ~ )  &~ = (3.10) 1 

To obta in  the same normal iza t ion  for the ~,m, we introduce the raising and  
lowering opera tors  

= 1 - -  a +/ . , / 'n;  A~_ = 1 - a  /~ /n  (3.11) An+ 

and require 

An+ ~.,,, = ~.,,,,+ 1 ; ~nn= ~n0 (3.12) 

Since a+  is a mult iple of 8~BUr, 17) this ensures that  A ,+  preserves the 
normaf iza t ion  condi t ion (3.10). For  the act ion of An_ one finds 

A .  ~n,,, = (re~n)  (, . . . .  1 (3.13) 

We now return to (3.4) and insert in (3.4b) the addi t ional  decomposi -  
tion 

nL g ' .  (u~)= ~L- f i tm~,n,, ,(Ur) (3.14) 
m ~ O  

3 The specific form of the exponential results from the factor exp(-u2/2) multiplying the 
harmonic oscillator eigenfunctionsJ 13~ 
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From (3.5) one then obtains a set of equations for the nL. f i l m "  

(n - m - 2l) fill L = 2(l + 1 ) n t/2 [f,,L ,,L 

V f~L m+ lfT_C ,l_Um+l 1 
- 21(n)~/2 L i_l,l_l,m-- T 

+ n , , 2 [ ( _ l + i + 2 l ) f , , c  �9 ,a. l - - l , l , m - - 1  -~- (4-- 21) f i-1,lm 

+ ( - 3 + i - 2 l )  m + l f  ] n nL-l'l'm+l 

where we used the convention 

(3.15) 

fi~Cm=0 for / < 0  or m < 0  (3.16) 

The set of equations (3.15) is solvable provided the right-hand side 
vanishes for m = n - 2 / ;  on the other hand, it leaves the f~c il, n 2l  undeter- 
mined. This ambiguity can be resolved by requiring that the solvability 
condition shall be satisfied in order i+ 1. Thus, fnL is determined by il, n - -  2 l  

putting m = n - 2 l  in the rhs of (3.15), replacing i -  1 by i throughout, and 
putting the result equal to zero. This allows one to determine the nc f il, n - -  2 l  

(none of the other fnL occurring in this relation obeys the resonance il ' m '  

condition m' + 21' = n). A simple example of the calculation sketched above 
will be given in Section 5. 

Next we consider the start of the recursion scheme. At order i 0 
the right-hand side of (3.15) vanishes by definition. There are I-n/2] + 1 
independent solutions, which we choose to be 

f ,L  __~lL(~m n (0~<L~< [n/2]) (3.17) i o l m  - -  ~ 2 L  

i.e., all ,L fiolm obey the resonance condition, (Moreover, no solutions are 
obtained for noninteger n.) At order io+ 1, and for a resonant index pair 
(l, m), the right-hand side of (3.15) reduces to ( 4 - 2 i o - 2 )  ,L f iolm' and the 
solubility condition is violated unless we choose 

io = 1 (3.18) 

[since different (l, m) do not couple, nothing is gained by considering 
linear combinations of the solutions (3.17)]. Thus, the only possible solu- 
tions of type (3.4) have the asymptotic behavior (3.3), as we conjectured. 

Further inspection shows that nonvanishing fi~Lm Occur only for 

max[0, L -  i +  1] <~I<.L+ i -  1 
(3.19) 

max[O, n -  2 L -  i + 1] <<. m<~ n -  2L + i -  1 
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Thus, only a finite number of new coefficients appear in each order; this 
will be crucial for the solution of the boundary value problem. 

To conclude this section, we mention two important properties of the 
solutions 5 unL. First, the associated current density 

jnC(r) = f du u 7t'C(u r, Ur r) (3.20) 

as for any solution of (2.1), must have vanishing divergence, hence be a 
constant or a multiple of r -2. Both possibilities are excluded by the ansatz 
(3.4); hence jnL(r) vanishes, and in particular 

.hE , f Jr ( t )=  duur~"C(ur,  u , , r ) = O  (3.21) 

Second, our calculations showed, in all cases considered, that the density 
associated with 7 ~L is determined completely by the contributions of order 
i = 1; hence 

nnL(r)= [ du nL r) 1 
~/ ( U r ,  L/l, = -- e ' "n6Lo (3.22) 

d Y 

We did not succeed in finding a general proof; our later use of the relation, 
however, involves only orders in i for which the relation was checked 
explicitly. 

4. T H E  R E D U C T I O N  OF THE S P H E R I C A L  B O U N D A R Y  
LAYER P R O B L E M  

The problem addressed in this section is the construction of the Milne 
solution PM of (2.8), satisfying the boundary conditions 

lim PM(Ur, U,, r ) =  cst. 7to(Ur, ut) (4.1a) 
r ~  

PM(Ur, u,,R)=O for u r > 0  (4.1b) 

The normalization of the solution might be fixed by specifying the constant 
in (4.1a), but mathematically it is slightly more convenient to fix the total 
incoming current density: 

f du UrPM(Ur, Ut, R )  = --1 (4.1c) 

Our solution strategy will be to reduce the spherical problem to a sequence 
of planar boundary layer problems. It is therefore convenient to use instead 

822/'55/5-6-17 
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of the ~g0, ~u., and ~ c  of Section 3 the slightly modified set of basic 
solutions 

qSo(U r, u,, r ) =  ~Uo(U r, u,, r) (4.2a) 

q~c(Ur, Ut, r) = R2gJc(Ur, ut, r) + R~o(Ur, ut, r) (4.2b) 

q~nL(Ur, Ut, r ) =  e R "/"Rgt"C(u~, u t, r) (4.2c) 

For R >> 1 these functions, considered as functions of r -  R, correspond to 
the gto(U x, u~, x), ~c(u,:, u~, x), and 9F,_ zI..L(u:,, x)  ZL(u,) of I, respectively. 

We now try to satisfy the conditions (4.1) by a linear combination of 
the functions (4.2). From (4.1c) one sees that the coefficient of r must be 
unity. The other coefficients are written as power series in R - t ;  the 
resulting ansatz is 

( 1 ) 
P M  = ~ ~  ( P 0 + ( ~ c  

nL + R-"5 ~ + " ' "  

nL will be determined consecutively by satisfying The coefficients c~ ~ and cq 
(4.1b) order by order in R -1, using the expansions (3.2) and (3.4) for gt c 
and the gtnL. Moreover, since (4.1b) must hold for all u,, and the Z~(ut) are 
a complete set of functions of u,, the condition (4.1b) must hold for the 
coefficients of each one of the XI separately. In order R ~ one so obtains the 
set of equations 

nO nO c~~ ~ lo (Ur )=0  for Ur>0 (4.4a) 
n 

E nL nL C%~IL(Ur)--O for u~>0; L~>I (4.4b) 
n 

with nL ~ L ( u r )  defined in (3.4b), and further specified in (3.14). From (3.15) 
and (3.12a) we conclude 

nO ~ ~o(Ur) = ~n,,(Ur) = ~'~0(Ur) (4 .5)  

Hence (4.4a) reduces to the classical Milne problem, discussed in I, for 
which both exact and accurate numerical solutions are known. In 
particular we have 

c~ ~ = XM = --ff(1/2) = 1.46035... (4.6a) 
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where r denotes the Riemann ~-function, and 

o + ~  0{~o riM(0) --~ 0.93611 O~ o 
/7 

(The latter quantity is equal to the density at the 
available in numerical form. 17'16~ The ,c q~lL(u~) are 

(4.6b) 

wall.) The :~o are 
identical with the 

. . . . .  2c(u~) introduced in Section 3; they are complete on ur >0,  c~7'51 hence 
(4.4b) implies 

%~c=0 for L~>I (4.7) 

The equations corresponding to (4.4) in order R-L are 

:~o~b ~  2~b2 + E ~  ~o-~,o - ,,o-~o~ La~ valo 4-0{o ~2oO=O; u~>O (4.8a) 
n 

Lxl ~11 -t- 0{o w21-1 =0;  Ur>O (4.8b) 
n 

Y~ "Lm~L = 0 for L > 2; Ur > 0 (4.8C) 0{1 ~ I L  
n 

In the next order the corresponding expressions are 

c~~ ~bo -- 6~b3 + 2 [0{2nO~10n0 "~- ~ln0~r'n0ql~'20 t 0{0--  nO-.,r-n01//30+ n l ~ n l l  ~--- O; 0{~ ~P2oJ 
n 

k~2 1/~11 -~- 0{1 ~ 2 1  - -@1 ~ 2 1  -I-0{0 kO3t ]  = 0 ;  
n 

E r n 2 ~ n 2 - -  n lo~nl -k  n0d)n01  = 0 ;  
L0{2 (/)12 ~- ~ ~ 2 2  - -  ~o ~ 3 2 3  

rl 

E nL~nL  % w l L = 0  for L~>3; u r > 0  
n 

The general structure of the hierarchy 
equation of each set one concludes 

~,"L = 0 for L > i  

The remaining equations have the structure 

 0aLo o(U )+ E O~i ~ ) I L ( U r ) =  g i  (ur) 
n 

u r > 0  

(4.%) 

u r > 0  

(4.9b) 

u r > 0  

(4.9c) 

(4.9d) 

becomes clear: from the last 

(4.10) 

for u r > 0  (4.11) 
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where g~(Ur) is a known function, expressible in the ~7c with j < i  and the 
~}c that were constructed in Section 3. In view of the relation 

05tlL(blr) = ~ . . . .  2 r ( U r )  = @n 2L, L(blr) ( 4 . 1 2 )  

this is the problem of finding the linear combination of the O.L(u.) [and 
~b0(ur) for L = 0] that matches c g~ (u~) for u~ > 0. This in turn is the albedo 
problem treated in Section 4 of I, a problem for which a unique exact solu- 
tion exists in principle, and an accurate numerical solution is available. 
Thus, each order in the hierarchy (4.8), (4.9), etc., can be reduced to a set 
of solvable planar boundary problems. In the next section we show that 
(4.8a) can again be reduced to the classical planar Milne problem; we also 
present some aspects of our numerical solution of (4.8b) and (4.9a). 

5. EXPLICIT LOW-ORDER RESULTS 

nO To solve (4.8a), we first construct 0520, using the procedure outlined 
in Section3. The starting point is (3.5) for i --2.  Separating the 
/-components and using the fact that ~u~,0 has only an l =  0 contribution, 
one obtains the equations 

nO nO. cgr. 052o=(a - a + )  [ c g r _ 2 ]  .o .0 (5.1) 051o, ~21 = - 2 a  051o 

To obtain solutions, one expresses the right-hand sides in terms of the 
eigenfunctions ~.m of Cgr., with eigenvalues n -  m, using (3.11)-(3.13): 

(a_ a+ ) nO 1/2 
- -  r = n  (-ff . ,n  l+~ . . .+1)  (5.2a) 

- 2a_ ~1o"~ = 2(n)1/2 (~... _ ~ - ~ . )  (5.2b) 

The relations (5.1) can now be inverted and give 

nO nO 0520 = --(n) 1/2 (~.,. 1 +~. , .+1)  + f2o .~ . .  (5.3a) 

C])nO __ n l / 2 ( _  2 r nO 
2 1 - -  t '~ . . . .  t q - ~ , , n ) +  f 21.n 2(~ . . . .  2 (5.3b) 

The coefficients f~o ~ and .o f2~,. 2 can be determined by putting the 
right-hand side of (3.15) for .o .o f30n equal zero. and f31,n- 2 to The other coef- 
ficients needed can be read off from (5.3); the results are 

05~~ = -(n)1/2 (~n, . , -- 2{n~ + ~.,~+ ~) = (a+ + a_ )  057 ~ (5.4a) 

q~o = n~/2(~.. _ 2~.,. 1 ~- ~ . . . .  2) = + a2- ~b7 ~ (5.4b) 
, /n 
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The first relation can be used to simplify the last term in (4.8a) by 
exploiting (4.4a) 4 

,o~,o  nO=(a + a  ) ( r 1 7 6 1 6 2  for u r > 0  ot o W2o=~C~~ +a_)q)lo + 
, '7 /'1 

(5.5) 

Using (2.10), we can now rewrite (4.8a) as 

((~O-t-1)  ~ 0 - - ~ 0 0 ~ 1  ~ - E  ~lnO~nOt/AtO = U~ for Ur>O (5.6) 
n 

and a comparison with (4.4a) yields the solution 

o (c~o)2 1 = 1.13264...; e~,o= o ,o (5.7) ~1 ~ - -  ~ 0 ~ 0  

For the first correction to the density at the wall one obtains 

n~ = c~ ~ + Z c~7 ~ = ~oOnM(0)  - -  1 "~ 0.36705 (5.8) 
n 

Some of the terms occurring in the other equations in (4.8) and (4.9) 
can be transformed in a similar way, but (as yet) not all. We therefore 
solved these equations numerically, using the procedure described in I. The 
main results are 

~o = -0.2660 + 0.0001 (5.9a) 

2 ~ o + z ~ o  = /7 M ~- -0.3346 _ 0.0001 (5.9b) 
n 

Two important aspects of the solution so obtained are the density at 
infinity, for which we obtain from (4.3) and (4.2b) 

o 1 o 1 
n E2~(R) = R + ~,o + ~ ~1 + R ~ ~o + . . .  (5.10) 

and the density at the surface of the sphere, determined with the aid of the 
identity (3.22), 

1 
+ ~ n ~ + - . .  (5.11) n~l](R )= nM(O) +_~ nM1 

1 ( -  

4I t  is not  trivial that ,  e.g., (a+ + a _ )  m ay  be in te rchanged  with the s u m m a t i o n ,  but  we 
checked it, bo th  analytically and  numerical ly.  
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Both quantities are calculated for unit incoming current per unit area, 
which is indicated by the superscript [1 ]. The reciprocal of (5.10), 

k ( R ) =  [n~] (R) ]  - t  (5.12) 

is the current density at the surface per unit density at r ~ o% i.e., the 
effective rate of the accretion reaction. 

Thus far we have calculated only a few terms in the expansion in R-~, 
and not much can be said about the convergence of the series. A first rough 
impression can be obtained from the plots of k(R) and n~3(R) as functions 
of R, shown in Figs. 1 and2,  respectively. For  R~>2, consecutive 
approximations do not differ too much, and the result should be reliable. 
As an additional check, we consider the limit R+0. Then the sphere 
becomes too small to affect the velocity distribution of the incoming 
particles to any significant extent, and we may assume 

PM(Ur, Ut, R) ~- Oo(u~) Zo(U~) O ( - u , )  n~ (5.13) 
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Fig. 1. Various approximations to the growth rate k(R) of a droplet of radius R (in dimen- 
sionless units). The upper dashed, dotted, lower dashed, and solid curves are obtained by 
approximating n~ ] in (5.12) by one, two, three, and four terms in (5.10), respectively. The 
long-dashed curve is Sahni's approximate analytic expression; ~1~ the crosses denote moment 
calculations by Kumar and Menon. (9) The arrow denotes the exact result for R = 0 ;  the 
tangent line to our best approximate result is used in constructing an approximate growth 
curve in Fig. 3. 
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Fig. 2. The density at the surface of the sphere for unit incoming current density as a 
function of its radius, as calculated by taking one (dotted curve), two (dashed curve), and 
three (solid curve) terms in (5.11). The arrow denotes the exact result for R=0. We use 
dimensionless units, defined in Section 2. 

The incoming current  is easily calculated, and we obta in  for the plotted 
quanti t ies  

k(R = 0 )  = ( 2 ~ z ) - 1 / 2  ,~__ 0.39894... 

n[el](R = 0) = �89 1/2 = 1.25331... 
(5.141 

These results are indicated by arrows in the figures. Also included in Fig. ! 

are the approximate  analytic expression proposed by Sahni ~~ and  numeri -  
cal results by K u m a r  and M e n o n  ~9) for some values of R. Both earlier 
results agree well with ours for no t  too small R values, 5 but  for R-~ 1 our  
best approx imants  lie clearly lower. 

6. T H E  G R O W T H  OF S M A L L  D R O P L E T S  

The model  treated in the preceding sections can be made into a model  

of droplet  growth if we assume that each arriving Brownian  particle 
increases the volume of the droplet  by an a m o u n t  v0. For  a completely 

5 Attempts to obtain better results by including more and more moments in a treatment 
similar to the one in ref. 9 were not successful. From a certain order, the approximants start 
to diverge, reflecting the divergence of the series (3.2). This behavior was predicted by 
Waldenstrom and Razi NaqviJ 19) 
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absorbing droplet  in a medium with a density of Brownian particles 
approaching  n o  for r --* oo we obtain 

dt 7rR 3 = 47rR2vonoo k (R)  (6.1) 

In s tandard units one has an extra factor (m/37) ~; in view of the Einstein 
relation this is precisely the diffusion coefficient D. The droplet radius thus 
obeys the equat ion 6 

dR Dvon~ 
-57=D o  k(R)-R+ ot+ oR lt2+ oR-2t3 + . .  (6.2) 

where l is the velocity persistence length defined after (2.1). Thus, the quan- 
tity plotted in Fig. 1 is propor t ional  to the R-dependent  growth rate of the 
droplet. The Smoluchowski  approximat ion  is obtained by replacing the 
denomina tor  in (6.2) by R; it yields the familiar growth law 

Rs( t )  = [ 2 D v o n ~ ( t -  to)] ~/2 (6.3) 

which leads to a, physically unacceptable, infinite growth rate at R = 0. 
In Fig. 3 we compare  the curve (6.3) with those obtained by taking 
successively more  terms in the denomina tor  of (6.2) into account;  we also 
show the result of the extrapolat ion to the known rate for R = 0 via the 
tangent construct ion shown in Fig. 1. Including the first correction term 
increases the time needed for growth from R = 0  to R =  10/ by 30%. 
Including two more  terms plus the extrapolat ion to R = 0 adds a further 
6 %. The even more  drastic effects on the growth time up to R = 2 .5 /are  
shown in the figure. 

Thus far we assumed that the droplet does not  release any of the 
Brownian particles back into the medium. If the Brownian particles are to 
represent vapor  molecules, this is not  very realistic, except at extremely 
high supersaturation. If we maintain the assumption that  each vapor  par- 
ticle hitting the droplet sticks to it at least long enough to become com- 
pletely thermalized, and assume that  the emission is thermal and does not  
depend on the concentra t ion of  vapor  molecules in the gas (which must  be 

6 In deriving (6.2), we have assumed that the current can at any stage be determined from a 
stationary solution of the Klein-Kramers equation (2.1). This is justified as long as the 
growth rate in (6.2) stays much smaller than the thermal velocity of the Brownian particles. 
To check this, we note that the denominator of (6.2) is always larger than l. Thus, the ratio 
of (6.2) to the thermal velocity stays smaller than yon ~. the volume fraction of the gas (at 
r = oo) occupied by the Brownian particles. This quantity must be very small for a descrip- 
tion in terms of noninteracting Brownian particles to make any sense at all. 
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Fig. 3. Growth curves for the droplet radius, in velocity persistence lengths, as functions of 
tn~ Vo, with n:~ the density of the vapor at r = o% v o the volume per particle in the liquid, and 
t measured in units of the velocity relaxation time, as calculated with our successive 
approximations to the reaction rate k(R). The upper dashed, dotted, lower dashed, and solid 
curves are calculated using the corresponding approximations shown in Fig. 1. The dashed 
continuation of the solid curve was calculated using the tangent interpolation also shown 
there. Eor a finite saturation density n, one can replace n~ by n~ -n , .  

low in any case), the requ i rement  tha t  the d rop le t  can be in equi l ibr ium 
with a vapor  of the sa tu ra t ion  densi ty  n s leads to the b o u n d a r y  condi t ion  

P(ur,  u,, R)  = n,~bo(Ur) )~o(U,) for ur > 0 (6.4) 

ins tead of (4.16). This b o u n d a r y  condi t ion  is satisfied by the d i s t r ibu t ion  

P, , (u , ,  ut, r ) =  PM(ur,  ut, r) + n,  ~o(Ur, ut, r) (6.5) 

Since only the c o m p o n e n t  PM carries a current ,  the result ing growth  law 
simply becomes  

dR Dvo(n ~ - n ,)  

d t -  R + c~~ + C~~ + e ~  + . . .  (6.6) 

i.e., only  the excess of n~  over  n, cont r ibu tes  to the growth,  as was to be 
expected.  Equa t ion  (6.6) also describes the shr inking  of d rople t s  in under-  
sa tu ra ted  vapor .  As a fur ther  step t oward  a more  realist ic descr ipt ion,  one 
might  include surface tension effects via an R dependence  of ns .~18) Whethe r  
this makes  sense depends  on the magn i tude  of  o ther  neglected effects, some 
of  which we shall  list in the next and  final section. 
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7. C O N C L U D I N G  R E M A R K S  

The main advantage of our approach, as compared to earlier treat- 
ments, is its systematic nature. Our procedure itself determines which 
moments contribute in each order; in each order, the boundary condition 
is satisfied exactly, and the coefficients obtained are also exact, at least in 
principle. 

Mathematically, the main open question is the convergence of the 
expansion in R 1. The series (3.2) for the current solution is certainly 
divergent for some of its arguments, and similar divergences can be expec- 
ted for the series (3.4a) for the boundary layer eigenfunctions. In our treat- 
ment the multiple summations (in particular those over n and i) are 
rearranged; this may improve the convergence, at least for certain moments 
of the distribution function. The first evidence contained in Figs. 1 and 2 is 
at least compatible with this kind of behavior; some additional evidence 
might be obtained by evaluating a few more terms in the series. If a finite 
radius of convergence is indicated, or if the series turns out to be 
asymptotic and of little use for small R, a complementary expansion for 
small R would have to be devised, and one may hope for an overlap of the 
convergence regions (or of the regions where the series provide accurate 
approximations). Such an approach may also become necessary when 
higher order terms in the series become unreliable due to accumulating 
numerical roundoff errors (convergence of the series for all R requires a 

,L with i). rather rapid decrease of the absolute values of the c~ i 
Physically, our model involves a number of idealizations, only some of 

which are essential for its solvability. The condition that all particles hitting 
the surface are absorbed can be relaxed. A formalism for including the 
effect of partial absorption, and of temperature differences between droplet 
and gas, is described in I; its extension to the spherical case is 
straightforward. We note, however, that a sticking coefficient depending on 
ut gives rise to an infinite set of coupled equations for the )~t moments of 
the distribution function. Fortunately, experiments indicate (see, e.g., 
ref. 20) a sticking coefficient depending almost solely on ur, at least for 
sticking to solid surfaces. A spectrum of reemitted particles deviating too 
strongly from a Maxwellian for high lul might also give rise to convergence 
difficulties ~7"16~ in the numerical treatment. 

Especially for small droplets, effects of the heat of condensation may 
be important. They lead to an R-dependent temperature profile in the gas 
and to a temperature jump between the droplet and the surrounding gas 
mixture. Such effects also occur when one applies the model to particles 
tbat undergo chemical reactions at the surface (diffusion of oxidants to 
burning droplets). The effects of a temperature profile on the Klein- 
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Kramers equation were studied in a recent paper./21~ They are readily 
incorporated into the present treatment, at least when the temperature 
profile is a simple function of r 1, and the friction coefficient is a simple 
function of the temperature. In principle, the temperature jump at the sur- 
face will give rise to a kinetic boundary layer in the medium, in which the 
temperature profile is far from simple. This can be neglected, however, 
when the velocity persistence length of the Brownian particles is large 
compared to the mean free path for a particle of the background gas 
(which determines the size of the thermal kinetic boundary layer). 

The most serious restriction on the applicability of our model is the 
assumption of free Brownian dynamics. This means that the mass ratio 
between the vapor molecules and those of the background gas must be 
large, and that the concentration of the vapor must be low. In addition, 
hydrodynamic backflow effects, which give rise to long-time tails in the 
velocity autocorrelation functions, are neglected; this means that the 
medium must have a specific weight low compared to that of the Brownian 
particles. This will be the case for not too dense gases, but not in general 
for fluids. When one or more of the above conditions are violated, one has 
to use a less simple kinetic equation, e.g., the (linearized) Boltzmann equa- 
tion for a gas or a gas mixture. The construction of boundary layer solu- 
tions becomes much less simple, mainly because the collision operator (the 
analogue of our cg, + Tt) does not separate into operators acting on u, and 
u, only. Also, the number of variables in the hydrodynamic description 
(applicable far from the droplet) increases, and there are convective as well 
as diffusive contributions to heat and mass transport. In such cases one 
may still use moment methods like the ones used in ref. 9. A comparison 
between moment methods for the Brownian motion case and our more 
systematic treatment may be of some help in assessing the reliability of the 
former for more complicated kinetic equations. 
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